Sprinkler / Interaction soufflants

Modélisation de l'influence des aérothermes et des destratificateurs d'air sur les délais de déclenchement des systèmes ESFR en cas d'incendie

Étude réalisée par CNPP - Date 27/02/2019 - Mise à jour de décembre 2022

CONTEXTE

- · Utilisation très répandue des soufflants (aérothermes, déstratificateurs, etc) dans l'industrie surtout en entrepôts logistiques
- Postulat : existence d'interaction entre les mouvements aérauliques induits par les soufflants et le déclenchement du système de protection sprinkler de type ESFR
- · Principes de précaution existants dans les référentiels (vitesse de soufflage, zone de non combustible)
- · Peu d'essais réalisés pour tester et mettre en évidence les modalités d'interaction

PROBLÉMATIQUE Quel impact de la vitesse de soufflage et de la proximité de combustibles dans le périmètre des soufflants sur le déclenchement de la protection sprinkler?

PRINCIPAUX RÉSULTATS Critères de succès en référence au cas sans soufflage

	Réussite	Échec
Déclenchement dans un périmètre de 2 ESFR autour du point d'allumage	8	X
Δ Temps de déclenchement ≤ 30s	Ō	Ŏ
Δ Puissance de feu au déclenchement ≤ 50%	*	*

Position	Zone sans combustible	\(\text{i}\)	Résultats selon la hauteur de stockage				
soufflant		Vitesse soufflage	12,2 mètres		5,8 mètres		
Vertical sous plafond	3x3 m	Référence (0 ms-1)	t = 2 min 21	P = 5,8 MW	t = 2 min 22	P = 9 MW	
		5 ms ⁻¹	⊗ (3 6	⊗ (3 4	
	Aucune	Référence (0 ms ⁻¹)	t = 2 min 14	P = 4,7 MW	t = 2 min 14	P = 6,2 MW	
		5 ms ⁻¹	⊗ Ø ♦		⊗ Ø ♦		
		15 ms ⁻¹					
Horizontal sous plafond	3x5 m	Référence (0 ms-1)	t = 2 min 22	P = 5,9 MW	t = 2 min 22	P = 7,6 MW	
		5 ms ⁻¹	⊗ (3 h	⊗ (3 h	
	Aucune	Référence (0 ms ⁻¹)	t = 2 min 25	P = 8,7 MW	t = 2 min 16	P = 7 MW	
		5 ms ⁻¹	Ø Ø 🔥		⊗ Ø ♦		
		15 ms ⁻¹					
Horizontal contre mur mi-hauteur	3x5 m	Référence (0 ms ⁻¹)	t = 2 min 13	P = 7,4 MW	t = 1 min 57	P = 4 MW	
		5 ms ⁻¹	⊗ (3 6	⊗ (3 4	
	Aucune	Référence (0 ms ⁻¹)	t = 2 min 13	P = 4 MW	t = 2 min 08	P = 3,9 MW	
		5 ms ⁻¹				issance = 48% oche de l'échec	
		15 ms ⁻¹	& (<u>3</u>	Q (3 1	

CONCLUSIONS

1 Temps et périmètre de déclenchement:

Pas d'impact significatif modélisé pour des vitesses de soufflage de 5 ms⁻¹ et 15 ms⁻¹

2 Présence de combustibles et puissance de feu:

- Pas d'impact significatif modélisé en respectant une vitesse de soufflage de 5 ms⁻¹
- Pas d'impact significatif modélisé avec une vitesse de soufflage de 15 ms⁻¹ pour des soufflants au plafond
- · Impact significatif modélisé avec une vitesse de soufflage de 15 ms⁻¹ pour des soufflants contre mur à mi-hauteur
- → Pertinence de la limitation de vitesse

PERSPECTIVES

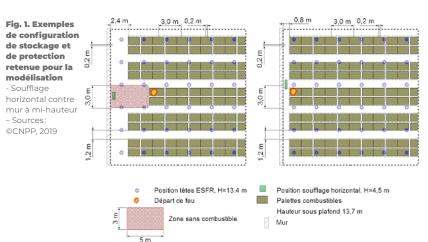
• Approfondir les modélisations avec ESFR:

- Cas du soufflage contre mur à mi-hauteur: changer la position du soufflant par rapport au rack
- · Soufflage au plafond: Faire varier la distance libre sous plafond et la hauteur du soufflant (pertinent dans le cadre de stockage en entrepôt à température contrôlée)
- · Soufflage contre mur: Faire varier la distance mur/soufflant

2 Élargir le scope de l'étude à d'autres types de protection: CMSA

 Enrichir la modélisation par des essais pour certaines configurations

PROTOCOLE DE MODÉLISATION


Configurations en entrepôt représentatives du marché

Paramètres fixes:

- · Bâtiment de 13,7 m; T°C ambiante: 20°C
- · Marchandises HHS3 en stockage ST4
- · Protection ESFR
- · Soufflant: bouche d'aérotherme de 600 par 600

Paramètres variables:

- Hauteurs de stockage 12,2 m et 5,8 m: différence d'impact entre flux laminaire et mouvement massique
- · Position et vitesse du soufflant
- · Présence ou non de zone de non combustible

Modélisation jusqu'au déclenchement de la 1re tête sprinkler

- Code Fire Dynamic Simulator (FDS) développé au National Institute of Standards and Technology
- Calibrage: vérification de la cohérence avec les résultats des essais d'interaction entre sprinklers et HVLS de Fire Protection Research Foundation

Soufflage 15 ms⁻¹

Soufflage 15 ms⁻¹

TEMPERATURE [°C]: 20 30 40 50 60 70 80 90 100 110 120 130 140

Fig. 2.

