Batteries au lithium et risque incendie

Étude réalisée par CNPP - Date 09/2013 - Analyse de risque

CONTEXTE

 Les batteries au lithium sont de plus en plus utilisées dans des domaines variés: aéronautique, aérospatial, armement, transport terrestre, secteur médical, bâtiment, industrie, énergie renouvelables, équipements de loisirs et domestiques. •La terminologie « Batteries au lithium » recouvre plusieurs technologies destockage électrochimique, qui présentent des spécificités en termes de caractéristiques mais aussi de risque.

PROBLÉMATIQUE

· Quels sont les caractéristiques et risques associés aux différentes technologies de batteries lithium pour le stockage d'énergie?

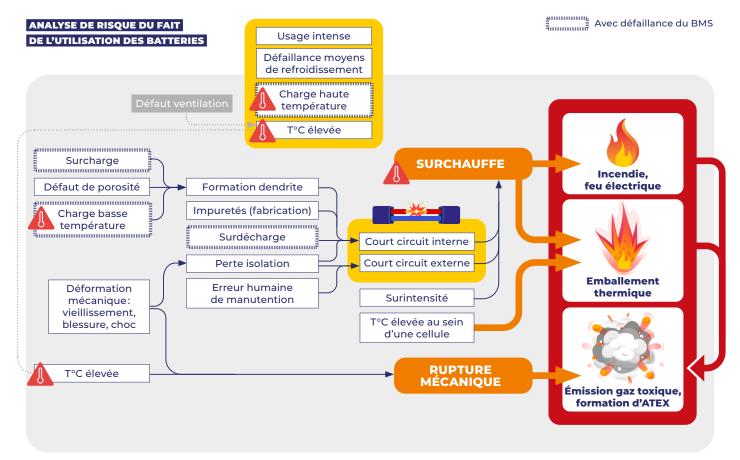
PRINCIPAUX RÉSULTATS Questions à poser afin d'alimenter l'analyse de risque:

La batterie:

- · Quelle technologie de batterie?
- · Pour quelle utilisation / application?
- · À quelle étape la batterie est-elle mise en œuvre?
- · Quel état de charge?
- · Quel nombre de cycle de charge / décharge?

Moyens de prévention / protection?

- · Quelles précautions d'utilisation (tension de charge, etc.)?
- · Quels moyens de protection électrique (BMS, fusible, etc.)?
- · Quels moyens de protection incendie?


Dans quelles conditions?

- · Stockage de batteries ou batterie isolée?
- · Quelles conditions de stockage?
- · Diversité de batteries dans le stockage?
- · Quelles conditions climatiques?
- · Contact avec de l'eau, solvants?
- · Proximité d'une source chaude?
- · Comment est-elle manipulée?
- · Quelles potentielles contraintes mécaniques (percement, compression)?
- · Décharge ou surcharge anormale?
- Desserrage possible des contacts aux bornes?

COMPARAISON DES PRINCIPAUX TYPES DE BATTERIES LITHIUM*

(+)	Type de batterie	
Poids Densité énergétique (90 à 180 Wh/kg) Pas de maintenance nécessaire	Lithium-ion (Li-ion) —électrolyte liquide —	 Vieillissement même en l'absence d'utilisation Risque incendie-explosion, emballement thermique
 Possibilité de forme fine et variée Poids Adaptée aux supports flexibles Moindre risque de fuite d'électrolyte 	Lithium polymère (Li-Po) —lithium-ion à électrolyte gélifié—	 Densité énergétique (100 à 130 Wh/kg) Prix Durée de vie (200 à 300 recharges) Précautions renforcées pour la charge
· Densité énergétique (1500 à 2500 Wh/kg)	Lithium-air	· État expérimental
Absence de risque d'explosion Impact moindre sur l'environnement	Lithium phosphate de fer (LFP)	· Prix
Absence de risque d'explosion Absence de polluant majeur (excepté oxyde de vanadium le cas échéant)	Lithium métal polymère (LMP) —lithium-ion à électrolyte solide—	Température élevée de fonctionnement Manque de retour d'expérience Inflammation du métal au contact de l'air, forte réaction à l'eau avec dégagement de gaz inflammables

^{*} La famille des batteries lithium-ion regroupe plusieurs types de batteries en fonction du matériau de la cathode et de l'électrolyte utilisé. Chaque type possède des avantages / inconvénients spécifiques.

ANALYSE DE RISQUE SPÉCIFIQUE AU STOCKAGE DE BATTERIES **SURCHAUFFE** Diversité des Incendie, batteries présentes Diversité (état de charge, feu électrique des flux entrants endommagées, etc.) Mauvaise étanchéité / stockage extérieur Présence d'eau dans le conteneur Court circuit Malveillance interne **Emballement** Court circuit thermique T°C élevée externe Déformation mécanique: Perte isolation vieillissement, blessure, choc Percement, Erreur humaine compression par **RUPTURE MÉCANIQUE** de manutention un chariot élévateur Émission gaz toxique, formation d'ATEX

